ホーム - 顕微鏡を学ぶ - 偏光顕微鏡を基本から学ぶ - 【第2回】

2009.07.13

偏光顕微鏡を基本から学ぶ 【第2回】偏光解析の基礎

偏光顕微鏡キーワード一覧

1.直交ニコル間の異方体
図2-1 直交ニコル間の異方体

図2-1 直交ニコル間の異方体

直交ニコルの状態では光は透過しないが、ポラライザ、アナライザの間に異方体を入れると、偏光状態が変化し光が透過するようになる。図2-1において、直交ニコル間に位相差δを持つ結晶を、その光学軸がポラライザの振動方向に対して角度θで置かれた時、射出光の強度Iは式2-1のようになる。

式2-1

ここでI0は平行ニコル時の透過光強度、Rはレタデーション(式1-2)である。この式より、異方体が回転した時の明るさの変化と、あとに述べるレタデーションによる干渉色の変化を説明することができる。

1-1.異方体を回転させた時の明るさの変化

式2-1より異方体の光学軸がポラライザの振動方向と一致した時または直交した時に、異方体が暗黒になる位置があることが判る。これを消光位 extinction positionという。その45°方向に最も明るくなる位置があり、これを対角位 diagonal positionという。図2-2は異方体を回転させながら観察した時の様子で、明るさが変化することがわかる。

図2-2 異方体の対角位と消光位

図2-2 異方体の対角位と消光位

1-2.異方体の干渉色

式2-1において、異方体の位相差δが、0.2π、4π・・・(レタデーションRが0、λ、2λ、・・・λは単光色の波長)の時に透過光強度は0、すなわち暗黒になり、δがπ、3π、5π・・・(Rがλ/2、3λ/2、5λ/2・・・)で最も明るくなる。これは、異方体を通過した常光線と異常光線の間に位相差を生じ、アナライザを通過後、干渉を起こすためである。図2-3は複屈折を持ったくさび状の石英板を直交ニコルとの間の対角位置に置いた時の光の透過率を表す。単色光の場合、透過光強度は明暗の縞となる。常光線と異常光線の位相差δは波長によって異なるため(式1-1)、各波長の光で透過率の違いを生じる。

図2-3 くさび状の石英板の透過率

図2-3 くさび状の石英板の透過率

図2-3のくさび状の石英板を白色光で観察した時、ある波長では干渉により打ち消され、ある波長では透過する。このため、可視光の波長を重ね合わせる時、色づきが現れる。これを干渉色 interference colorという。

異方体のレタデーション量と干渉色の関係を表したものを干渉色チャート interference color chart(図2-4)という。異方体の干渉色を干渉色チャートと比較することで、異方体のレタデーションを推定することができる。干渉色チャートには複屈折(ne-no)と異方体の厚さdの関係を示した直線が描かれており、レタデーションから標本の厚さdまたは複屈折(ne-no)を求めることができる。

図2-4 カラーチャート

図2-4 カラーチャート

カラーチャートに見られる0次の黒から第1番目の赤紫色までを、第1次色 the first order colorsという。第1次の赤紫色は非常に鮮やかであり、また僅かなレタデーションの違いで干渉色が黄色、赤から青に変化している。この赤紫色は鋭敏色 sensitive colorと呼ばれる。第1次赤と第2次赤の間の色を第2次色といい、第2次青、第2次緑等という。高次になるに従って干渉色は白色に近づく。

鋭敏色前後のレタデーションに対する干渉色の透過率曲線を図2-5に示す(式2-1から算出)。鋭敏色では緑の光が透過せず、赤紫色に見える(図2-5 b.)。鋭敏色からレタデーションが減少すると図2-5 a.のように緑から赤までの広い範囲の混色光となり黄色に見え、増加すると図2-5 c.のように青色の干渉色になる。

図2-5 レタデーションと透過率曲線

図2-5 レタデーションと透過率曲線

12